4-H / FFA Dairy Foods Contest

Coaches Guide
Table of Contents

Rules and Regulations ... 3
Lesson 1: Importance of Senses ... 9

Chapter One
Facts about Milk ... 11
Lesson 2: Evaluating Milk ... 17
Milk Score Sheet ... 20

Chapter Two
Facts about Cheese ... 21
Lesson 3: Identifying Cheese ... 25
Cheese Identification Score Sheet ... 27

Chapter Three
Facts about Ice Cream ... 29
Lesson 4: Evaluating Ice Cream ... 34
Ice Cream Score Sheet ... 36

Chapter Four
Facts about Real and Non-Real Dairy Products 37
Lesson 5: Differentiating Real and Non-Real Dairy Products 39
Real and Non-Real Dairy Products Score Sheet 41

Chapter Five
Facts about Milking Machines and Sediment Pads 43
Lesson 6: Evaluating Milking Machines and Sediment Pads 46
Milking Machines and Sediment Pads Score Sheet 48

Sample Questions
Marketing ... 49
Production ... 54
Consumer ... 59
4-H / FFA INTRODUCTION TO DAIRY FOODS JUDGING

OBJECTIVES

Purpose: The purpose of this program is to train the individual to judge those dairy products by appearances, textures, quality and flavors that reflect some production, processing, or handling condition which has influenced the quality of the finished dairy product. On the other hand, these same characteristics can prove quite helpful in the identification of various cheeses and the evaluation of their respective quality, as well as real dairy versus non-dairy or substitutes. Thus, the learning objectives for this program are:

1. To learn about the marketing aspects of dairy products;
2. Product identification;
3. Evaluating and identifying dairy product defects based on organolytic (sensory) techniques to detect flavor, texture and appearance attributes.
4. The familiarizing of the student with processing, handling and storage practices that affect dairy product quality; and
5. Teach to be an informed consumer when purchasing and consuming dairy products.

IMPLEMENTATION AND PARTICIPANT SCHEDULE

Registration Fees

Coaches with individuals and/or teams desiring to participate in either of the following State Judging events must send a complete payment to Purdue University - Judging Account along with the registration form.

Dairy Foods ... Registration only $7.00/contestant
Meats...Registration includes meal $10.00/contestant

Immediately following the area event:

1. The Extension 4-H / FFA Ag Judging Area Chairperson should within 24 hours following the area contest, duplicate the signed, original registration forms and forward these originals for all eligible area teams and individuals to the State 4-H Dept., AGAD Building, Purdue University, West Lafayette, IN 47907. Retain one duplicate copy for the coach and one for the area records.

2. Upon receipt of the area winners by the State 4-H Department, a letter with information for the respective state event will be mailed to the coach(es) and to the area Ag Judging Chairperson.

3. State Registration: State contest information, minus confirmation(s) for each coach, will be supplied to the Area Ag. Judging chairperson for personal presentation to the coaches of qualifying teams and/or individuals from each area event.
A. State Contest Requirements for Junior Division
1. Registration due: December 15
2. Counties or schools can register more than one team. Because of limited space in contest facilities, if too many teams register, then each county or school will be restricted to 1 team.
3. Juniors must be in the 8th grade or younger by January 1 of the current year.
4. A team consists of 4 youth with the worst (highest) score dropped.

B. Awards for Junior Division
1. The Junior contest is designed as a learning opportunity. Winners will be announced and plaques will be awarded to the top 5 individuals. No trips will be awarded.
2. Plaques will be awarded to the top 3 teams, whether 4-H or FFA.

A. State Contest Requirements for Senior Division
1. Registration due: December 15
2. Counties or schools can register more than one team. Because of limited space in contest facilities, if too many teams register, then each county or school will be restricted to 1 team.
3. Seniors must be in 9th through 12th grade by January 1 of the current year.
4. A team consists of 4 youth with the worst (highest) score dropped.
5. Winning teams cannot compete again.

B. Awards for Senior Division
1. Winners will be announced and plaques will be awarded to the top 5 individuals.
2. Plaques will be awarded to the top 3 teams, whether 4-H or FFA.
3. Top Sr. 4-H team wins a trip to the National Dairy Conference and World Dairy Expo.
4. Top Sr. Individual is awarded the State Fair Achievement Trip to Washington, D.C.
5. Top 4 FFA teams receive plaques at the State Convention
6. Top FFA team is invited to compete at the National Contest at the National Convention
7. Top 10 individuals receive ribbons

STATE CONTEST CLASSES (JUNIOR AND SENIOR CONTEST)

A. The contest has both a 4-H and FFA Division. The classes for each division are as follows:

<table>
<thead>
<tr>
<th>4-H DIVISION</th>
<th>FFA DIVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Milk Samples</td>
<td>1. Milk Samples</td>
</tr>
<tr>
<td>2. Cheese Identification</td>
<td>2. Cheese Identification</td>
</tr>
<tr>
<td>3. Problem Solving Class</td>
<td>3. Problem Solving Class</td>
</tr>
<tr>
<td>4. Ice Cream samples</td>
<td>4a. Sediment Pads</td>
</tr>
<tr>
<td>5. Questions on the Consumer</td>
<td>4b. Milker Unit Heads</td>
</tr>
<tr>
<td>Aspects of Dairy Products and Marketing</td>
<td>5. Questions on Milk</td>
</tr>
<tr>
<td></td>
<td>Production and Marketing</td>
</tr>
</tbody>
</table>
a. Contestants will be allowed 2 1/2 hours for the contest.
b. The score made by each contestant is the number of points deducted; therefore, the lower the score, the higher the rating.
c. Ties for individual awards will be broken by:
 • First by scores of the Questions class
 • Second by the total of the scores in the Milk Samples, Cheese Identification and Problem Solving Classes combined

B. Class Description

1. Milk Samples
 • Six milk samples will be scored on flavor (taste and odor); intensity levels are numbered
 • Use score card 4H-653 MILK SAMPLES
 • Possible score: -54 to 0

2. Cheese Identification
 • Nine cheese samples for identification will be selected from the following list:
 Blue Monterey (Jack)
 Brick Mozzarella/Pizza
 Brie/Camembert Munster
 Cheddar (mild) Parmesan
 Cheddar (sharp) Processed American
 Colby Provolone
 Cream/Neufchatel Swiss
 Edam/Gouda
 • Use score card 4-H-654 IDENTIFICATION OF CHEESES
 • Possible score: -54 to 0

3. Problem Solving
 • Use score sheet 4-H 714 PROBLEM SOLVING
 • Possible Score: -54 to 0

 Part I
 - Five samples for identification as a real or artificial dairy product will be selected from the following list:
Creams
- coffee cream
- non-dairy creamer
- condensed milk
- filled milk

Cultured products
- tofu
- yogurt
- sour cream
- “No Fat” sour cream

Cheeses
- cheese
- vegetable cheese

Toppings
- whipped toppings
- whipped cream

Spread
- butter
- margarine

Dairy frozen desserts
- “No Fat” ice cream
- ice cream

Part II

- Six questions will be asked related to any of the following topics:

 - Principles of merchandising dairy foods.
 - Factors impacting the demand for and commercial use of milk and dairy foods/products.
 - Nutritional value of dairy foods/products and their role in the diet.
 - Current issues relative to the marketing of milk and dairy foods/products and new developments in dairy foods processing.

4. Ice Cream Samples

- Six ice cream samples will be scored on flavor, body and texture
- Use score card 4-H-656 ICE CREAM
- Possible Score: -54 to 0

4a. Sediment Pads

- Six sediment pads to be scored on flavor (taste and odor)
- Use score card 4-H-657 SEDIMENT PADS
- Possible Score: -27 to 0
- Reference: Sediment standard charts for scoring milk may be obtained from the Standardization Branch, Dairy Division, C and C and AMS, USDA, Washington, D.C. 20250. Single copies of FB-2259 "Judging and Scoring Milk and Cheese" may be obtained from the same source. Additional copies may be had from the Office of Information, USDA, Washington, D.C. 20250

4b. Milker Unit Heads

- Six milker unit heads will be scored on defects present
- The flexible parts are to be scored as rubber parts, the rigid plastic or glass parts are to be scored as metal parts
• Contestants will be permitted to bring and use flashlights when actual units are used
• Possible Score: -27 to 0
• Use score card 4-H-658 MILKER UNITS

Total Possible Score For 4a and 4b Combined: -54 To 0

5. Questions
4-H: on Consumer Aspects of Dairy Products and Marketing
• Twenty-five objective questions on Consumer Aspects of Dairy Products
• Twenty-five objective questions on Marketing
• Possible Score: -50 to 0

FFA: on Milk Production And Marketing
• Twenty-five objective questions on Milk Production
• Twenty-five objective questions on Marketing
• Possible Score: -50 to 0

6. References for both 4-H and FFA questions:
- Recommended references to study for written tests
 e. "Dairy Products Judging," a 4-H manual prepared by the Agricultural Extension Service at the University of Tennessee, available through the Extension Publications Mailroom, Agricultural Administration Building, Purdue University.

SCORE SHEETS

<table>
<thead>
<tr>
<th>4-H 653 Milk Samples</th>
<th>Available from your County Extension Office or Purdue University</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-H 654 Identification of Cheese</td>
<td>Media Distribution Center</td>
</tr>
<tr>
<td>4-H 656 Ice Cream</td>
<td>)1187 Service Building</td>
</tr>
<tr>
<td>4-H 657 Sediment Pads</td>
<td>) S. University St.</td>
</tr>
<tr>
<td>4-H 658 Milker Units</td>
<td>) West Lafayette, IN 47909-1187</td>
</tr>
<tr>
<td>4-H 714 Problem Solving</td>
<td>)(765) 494-6794</td>
</tr>
</tbody>
</table>
LESSON ONE: IMPORTANCE OF SENSES IN EVALUATION

Project Skill: Developing Sensory Awareness
Life Skill: Acquiring Knowledge

Materials:
- American cheese (6 oz.)
- Swiss cheese (6 oz.)
- Milk (4 cups)
- Buttermilk (1 cup)
- Garlic powder (1 bottle)
- Salt (1 Tbsp.)
- Sugar (1 Tbsp.)
- Medium sized jars with lids (5)
- 2 oz. paper cups (5 for each student)
- A sketch of a tongue
- Bile salts or quinine (available from HS science lab or pharmacy)

Before Meeting:
The day before teaching this lesson, prepare the materials as described below.

1. Cut both kinds of cheeses into pieces approximately one inch square. Place each kind of cheese in separate plastic bag.

2. Pour one cup of milk into four separate jars with lids. Mix one of the following ingredients in each jar and label as indicated below:
 (1) Garlic - Mix 1/4 tsp. of garlic powder in 1 cup of milk
 (2) Salty - Mix 1 Tbsp. of salt in 1 cup of milk
 (3) Sweet - Mix 1 Tbsp. of sugar in 1 cup of milk
 (4) Bitter - Mix 1/16 tsp. of bile salts in 1 cup of milk
 (5) Sour - 1 cup of buttermilk

During Meeting: Meeting should be conducted in a room with a sink & running water.

1. Give a brief overview of the importance of the three senses in evaluating dairy products. Key points to cover:
 - Sight: enables you to visually inspect characteristics (color, shape, texture) of dairy products; and enables you to identify similarities and differences between products.
 - Smell: enables you to detect odors; and enables you to determine the flavor of a dairy product when you combine odor with taste.
 - Taste: enables you to detect four primary taste sensations (sweet, sour, salty and bitter) on specific locations on the tongue:
 - Salt - along the sides of the tongue
 - Sweet - on the tip of the tongue
 - Bitter - on the top surface of the tongue
 - Sour - along the sides of the tongue
2. Conduct sight sensory awareness exercise.
 • Give each youth a piece of American cheese and a piece of Swiss cheese.
 • Ask the following questions and discuss:
 Q: What differences do you see between the American and Swiss cheese?
 A: | American | Swiss |
 | Color | Yellow | Light yellow to white |
 | Shape | No holes | Presence of smooth holes |
 | Rind | No rind | No rind |
 Q: What other cheeses have you seen in the store? Do they look any different than the American or Swiss cheese? How?
 A: Refer to the table of Cheese Identification and description on page 24 for the descriptions of other cheeses.
 Q: What are some other foods that can be identified by using sight?
 A: Most foods. Your eyes prepare you for eating food.

3. Conduct smell sensory awareness exercise.
 • Give each youth five cups.
 • Have youth label cups 1, 2, 3, 4, 5.
 • Pour each of the prepared milk samples into these cups.
 • Have youth smell each sample one at a time.
 • Ask the following questions:
 Q: What smell did you pick up from cups 1 and 5?
 A: (1) Garlic (5) Buttermilk
 Q: Did you pick up any other odors from the samples in cup 2, 3 and 4?
 A: No. Salty, sweet, and bitter can't be detected by smell.
 Q: How do you check to see if milk is fresh or sour when you take the milk out of the refrigerator?
 A: Smell.
 Q: What are some other foods that can be distinguished by smell?
 A: Pizza, popcorn, etc.

 • Discuss locations of taste receptors by using tongue sketch.
 • Have youth evaluate milk samples used in smell sensory awareness exercise one at a time by performing the following steps:
 1) Swish each sample around the mouth, being sure to cover the whole tongue. Hold sample in mouth for no longer than 10 seconds. Then spit the sample out.
 2) After each sample, rinse mouth with water and then spit the water into the sink.
 3) Determine where on the tongue you pick up a taste and what taste it is.
 • Ask the following questions:
 Q: At what area of the tongue did you pick up the taste in cup 1,2,3,4 and 5?
 A: Salty - along the side and tip of the tongue
 Sweet - on the very front of the tongue
 Bitter - on the top surface of the tongue
 Sour - along the sides of the tongue
 Q: What are other foods that you can distinguish by taste?
 A: Milkshakes, various soft drinks, candy bars, etc.
BACKGROUND INFORMATION

Before refrigeration, most milk was consumed within a few miles of where it was produced. But with the rapid growth of cities came many changes; sanitation regulations, modern milking equipment, mechanical refrigeration, pasteurizing and bottling plants, the cream separator, special milk trains, and tank trucks. With these innovations, there was a shifting of the processing and the delivery of milk from farms to processing plants. Along with these changes came the scientific study of cow breeding and recognition that feeding is important for increasing a cow’s milk production.

MILK PRODUCTION

- A cow has the ability to convert foraged feed into delicious and nutritious milk.
- The composition of her milk is about the same day after day. It is the quantity rather than the quality of milk that varies with her feed.
- When eating only grasses in a pasture or hay in the winter, a good cow makes about 12 quarts of milk daily.
- When the cow is fed silage and concentrates, she can produce 25 quarts of milk a day or more.
- The cow’s four-compartment digestive system helps her accomplish the process of turning her feed into milk.
- Without much chewing, a cow’s feed is swallowed and goes into the first compartment of her stomach, the rumen.
 - In the next compartment, the reticulum, the food is squeezed into wads called “cuds”. They are about the size of chicken eggs. These are ejected back into the mouth and are chewed to break up the fibers. When the chewed cud returns to the rumen, microorganisms convert most of the food into fatty acids. These are absorbed into the blood and used for energy and to make milk fat.
 - The remaining fine material and fluid enter the third compartment, the omasum, in which water is squeezed out.
 - In the fourth compartment, the abomasum, chemical digestion begins with gastric juices and acid. Digestion continues in the intestine, where the nutrients are absorbed into the bloodstream.

A milking machine unit has four teat-shaped rubber cups that are attached to the cow’s teats. The milk is removed by suction provided by a pulsating vacuum. The cows are milked at least twice a day. Milking takes three to five minutes per cow. When withdrawn, the milk is at the cow’s body temperature of about 100° F, and it flows into a refrigerated tank, which is at least 45° F. The cold temperature maintains the high quality of milk while it is held for pickup.

PROCESSING

The tank truck driver will take the milk to the processing plant first, inspecting the milk to determine if it is cold and has a clean aroma. He obtains a sample that will be tested at the processing plant. Then the
cold milk is pumped from the refrigerated farm tank through a clean, sanitized hose into the insulated tank on the truck.

After the milk sample has passed several tests at the processing plant, it is pumped through sanitized pipes into the processing plant's refrigerated holding tanks.

Milk Quality

We buy the milk with the latest freshness date. We want milk with high drinking quality. The drinking quality includes the feel, taste, and smell that a person experiences when the product is taken into the mouth. The sense of smell is important in determining the flavor. A person is influenced very much by the sense of smell in making decisions relative to the flavor quality of most foods consumed.

The quality of the milk production on the farm largely determines the quality of dairy products found in the dairy case. Flavors of milk and dairy products may be caused by one or more factors:
- health of cow,
- feed consumed by the cow,
- bacterial action,
- chemical changes,
- absorption of foreign flavors by the milk after the milk is collected.

Because the consumption of dairy products depends primarily upon their flavor, dairymen are very cautious about feeding and milking practices. Here are some examples:
- if cows eat silage on pasture containing onions immediately before milking their freshly drawn milk will have off-flavors
- improper cleaning and sanitizing of equipment and improper cooling of milk also contribute to off-flavors in milk and milk products

The flavor of normal whole milk is pleasantly sweet and leaves only a clean, pleasing sensation. If an odor or aftertaste is detected, the milk has a flavor defect. Major flavor defects include bitter, feed, flat-watery, foreign, garlic/onion, high acid, malty, oxidized, rancid, salty, and unclean taste. See the milk flavor defect chart on page 15 for the causes of these flavor defects and how to prevent them. By understanding their origins, you will have a better basis for identifying and recognizing each of these flavor defects.

The hauler evaluates milk in farm bulk tanks before being pumped into the tank truck, but the critical quality checks begin at the dairy plant. Judging and scoring of milk and milk products are an important part of quality control, which starts in the receiving department and continues throughout the processing operation. Milk processing plants have various points during the process where they check for irregularities that will affect product quality. Normally, the quality control staff will evaluate the milk products after a few days of storage. They use the same procedure and similar score card that we use to measure the quality of the products they produce. The quality control is important for maintaining a high quality of milk product.

Determining the flavor

Before tasting a milk sample, you should note the odor or aroma. Smell the open container of milk rather than the individual cup, since the greater volume in the bottle makes it easier to detect the odor.

Frequently, odor alone is sufficient to classify milk properly. Tasting will enable you to further substantiate the flavor identified by the aroma. Odor plays a very important part in quality determination at a dairy-receiving platform. Because flavors become more volatile at higher temperatures, keep samples at room
temperature. A cold sample (below 45° F) chills your mouth and makes it difficult for you to distinguish certain flavors.

The ideal natural and pleasant flavor of fresh milk should be kept in mind for comparison. The mental image will help in distinguishing between samples that show varying characteristics and types of flavor.

MILK NUTRIENTS

Milk is about 87 percent water and 13 percent solids. The solids consist of fat and the fat-soluble vitamins as well as proteins, carbohydrates, water-soluble vitamins and minerals.

Following is a list of the nutrients provided by milk and an explanation of their benefits:

protein – builds and maintains body tissues and body fluids and helps form enzymes, hormones, body fluids, and antibodies that fight infection. It can also be used for increased energy. Casein makes up 82% of the total protein in milk. Because it contains all the essential amino acids, Casein is used as the standard by which the protein quality of other foods is measured.

carbohydrates – provide energy. The carbohydrate lactose is found almost exclusively in milk since it is the sugar secreted by the mammary glands. Lactose aids the absorption of the minerals calcium, phosphorus, magnesium, and zinc.

fats – supply energy and carry the fat-soluble vitamins A, D, E, and K. Milk fatty acids are 66 percent saturated, 30 percent mono-unsaturated, and 4 percent polyunsaturated.

vitamins – regulate body processes. Fat-soluble vitamins A and D are in milk fat. **Carotenoids**, which give milk its creamy color, are converted to vitamin A in the body. Vitamin A aids growth, helps maintain the health of tissues that protect against infection, and forms substances needed for sight in dim light. Vitamin D helps the body absorb calcium to make strong bones and teeth and to maintain bones. Vitamin B2 regulates the body’s production of energy from dietary fat, carbohydrate, and protein. It also promotes healthy skin and eyes.

minerals – build and maintain body cells and regulate body processes. Milk is best known for the mineral calcium.

calcium – helps teeth and bones become stronger and helps prevent and lower high blood pressure.

TYPES OF MILK

There are four major types of milks:
1. **Fresh fluid milk** includes:
 a) **Whole milk** – shipped in interstate commerce must be pasteurized, ultra-pasteurized, or UHT processed, and it must contain at least 3.25% milk fat and 8.25% solids not fat
 b) **Low fat milk** – has some milk fat removed. The product’s name will declare the percentage of milk fat, 0.5%, 1%, 1.5% or 2%. All low fat milks must contain at least 8.25% solids not fat
 c) **Skim milk** – has as much fat removed as possible. It must contain less than 0.5% milk fat and at least 8.25% solids not fat. It must be pasteurized, ultra-pasteurized, or UHT processed and fortified with 2,000 International Units (IU) of vitamin A per quart
 d) **Flavored milk** – is made by adding characterizing flavors, with or without
coloring and nutritive sweeteners, to a specific standardized milk
e) Skim milk
f) Acidified and cultured milk
g) Cultured buttermilk which can be made from low fat, whole or concentrated milks or reconstituted non-fat dry milk
h) Acidophilus cultured milk

2. Manufactured milk products include:
 • evaporated milk
 • evaporated skim milk
 • sweetened condensed milk

3. Powder milk includes nonfat powder milk, nonfat powder milk fortified with vitamins A and D contains 2,000 IU of vitamin A and 400 IU of vitamin D per quart when reconstituted according to label directions.

4. Specialty milks include:
 • multi-vitamin
 • multi-mineral milks
 • lactose-treated milk
 • low sodium milk.

MARKETING

The milk marketing and promotion programs are administered by the United States Department of Agriculture. Entry into these programs requires that the dairy producer qualify as a Grade A operation. Upon qualification, the dairy producer may participate in the Market Order Program. The program brings marketing benefits to both farmers and milk handlers.

Most milks have one of three use classifications.
1) Class I: uses generally include products for fluid milk products such as whole milk, skim milk, low fat milk, butter-milk, and flavored milk drinks.
2) Class II: uses refer to "soft" products such as cottage cheese, ice cream, and yogurt.
3) Class III: uses refer to hard cheese.
4) Class IV: uses refer to butter and dry milk powder.

The Market Order establishes prices by classes according to the use of the milk. A value is established for each class based on the current market value of the products included in that class.

The percentage of total milk used in each class is determined, then the percentage for each class is multiplied by the price established for that class to determine its value. The total of the four values is called the uniform price for that market order.

The uniform price is then used to calculate the valued of milk fat and protein within the market order. Each individual producer’s payment is determined by calculating the value of the total pounds of milk fat and protein shipped.

STORAGE TIPS

- When shopping, pick up the milk just before checking out.
- Refrigerate fresh milk at 40° F or below as soon as possible after purchase or delivery to the home.
- Use milk in the order of purchase.
- Chill UHT milk before serving. After it is opened, keep it refrigerated.
- Refrigerate powder milk once it is reconstituted.
- After pouring the milk you need, return the remainder to the refrigerator.
- If you don't use all the poured milk, refrigerate the unused milk separately. Don't pour it back in the original container.
- Close containers to prevent the milk from absorbing flavors from other foods in the refrigerator.
- Store dry milk in a cool, dry place. Reseal the container after opening.
- Store canned milk in a cool, dry place. After opening, pour the unused milk into a clean container and refrigerate.
- Humidity causes dry milk to lump and may change the color and the flavor. If this occurs, the milk should not be used.
Definition of Terms

Carotenoids - give milk creamy color and are converted to vitamin A in the body.

Concentrates – are the mixture of grain and seed oil cake, with protein, minerals, and vitamins added. It is so called because it supplies concentrated nutrients and energy.

Forage – food for animals especially when taken by grazing.

Lactose – aids the absorption of the minerals calcium, phosphorus, magnesium, and zinc. The carbohydrate lactose is found almost exclusively in milk.

Perishable – liable to spoil or decay.

UHT – Ultra Hi Temperature. A way to process milk so it may be stored at room temperature for up to three months.

Market Order Program

Quality – degree of excellence; possessing essential character such as being wholesome, safe, nutritious and acceptable for consumption.

Silage – is chopped green corn, sorghum, and soybeans.
MILK FLAVOR DEFECT CHART

Their Causes and Prevention

<table>
<thead>
<tr>
<th>Flavor Defect</th>
<th>Possible Causes</th>
<th>Prevention</th>
</tr>
</thead>
</table>
| **Bitter** | 1. Cows eating bitter weeds
2. Mastitic or stripper cows
3. Certain types of bacteria | 1. Eliminate weeds
2. Withhold milk of stripper cows
3. Use clean, sanitized equipment |
| **Feed** | 1. Strong silage feed before milking
2. Strong pasture feeds
3. Poor ventilation
4. Sudden feed changes | 1. Feed after milking
2. Do not pasture for 4 hrs. before milking
3. Ventilate feeding area
4. Make gradual feed changes |
| **Flat-Watery** | 1. Milk has been diluted with water | 1. Dry out holding tanks completely |
| **Foreign** | 1. Sanitizers in equipment
2. Some barn or crop sprays
3. Some fly sprays
4. Teat medicants | 1. Drain thoroughly
2. Ventilate. Don’t expose milk equipment
3. Ventilate
4. Clean Teats well |
| **Garlic or Onion** | 1. Cow eats or smells wild garlic or onion | 1. Control pasture |
| **High Acid** | 1. Unclean equipment
2. Poor cooling | 1. Clean and sanitize equipment
2. Promptly cool to below 40˚ F |
| **Malty** | 1. Contamination with malty bacteria
2. Poor cooling | 1. Clean and sanitize all equipment
2. Cool properly |
| **Metallic/Oxidized** | 1. Individual cows
2. Exposed copper in milk equipment
3. Milk exposed to any light | 1. Segregate susceptible milk
2. Eliminate copper and white metal
3. Avoid exposure to light |
| **Rancid** | 1. Late lactation
2. Air leaks in pipe line systems
3. High risers in pipe lines
4. Continuous operation milk pumps
5. Excessive agitation above 50˚ F
6. Bulk cooler deficiency | 1. Dry off stripper cows
2. Eliminate air leaks
3. Minimize risers
4. Run pump intermittently
5. Check bulk tank agitation
6. Be sure compressor is plugged in and has sufficient refrigerant to cool to 40˚ F within 2 hrs. |
| **Salty** | 1. Late lactation
2. Mastitic Milk | 1. Withhold milk
2. Discard |
| **Unclean** | 1. Poorly ventilated stables
2. Unclean equipment
3. Unclean udders and flanks
4. Moldy feed
5. Musty, milk-stoned equipment | 1. Ventilate
2. Keep equipment clean
3. Clean and clip
4. Avoid spoiled feeds
5. Properly clean and store equipment |
LESSON TWO: EVALUATING MILK

Project Skill: Detecting Flavor in Milk
Life Skill: Problem Solving

Materials:
- Homogenized whole milk (1 gal.)
- Raw milk directly from cow (1 pt.)
- Grape nut type cereal (2 Tbsp.)
- Medium sized jars with lids (6)
- Buttermilk (2 Tbsp.)
- Bile salt (1 Tbsp.)
- Milk flavor score sheet (one for each student, sample sheet is on page 20 in this module)
- 2 OZ. paper cups (6 for each student)
- Green onion (1)
- Copper pennies (2 or 3)
- Drinking water (4 Tbsp.)
- Molasses (1 Tbsp.)
- Clorox (4 Tbsp.)
- Salt (1 Tbsp.)

Before Meeting:
The day before teaching this lesson, prepare the materials listed.
1. Divide homogenized whole milk into 6 separate jars with lids.
2. Use the ingredients listed above, prepare 6 milk samples in each jar as outlined in the table below, and label each jar 1, 2, 3, 4, 5, 6.
3. Prepare samples as the table indicates:

<table>
<thead>
<tr>
<th>Defects</th>
<th>Ingredients used to create defects</th>
<th>Amount to add to 1 qt. of milk</th>
<th>Other things to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitter</td>
<td>Bile salts</td>
<td>1 Tbsp.</td>
<td></td>
</tr>
<tr>
<td>Feed</td>
<td>Molasses</td>
<td>1 Tbsp.</td>
<td></td>
</tr>
<tr>
<td>Flat/Watery</td>
<td>Water</td>
<td>4 Tbsp.</td>
<td>Refrigerate overnight</td>
</tr>
<tr>
<td>Foreign</td>
<td>Clorox</td>
<td>4 Tbsp.</td>
<td>Refrigerate overnight</td>
</tr>
<tr>
<td>Onion</td>
<td>Juice from gr. onion</td>
<td>4 drops</td>
<td>Refrigerate overnight</td>
</tr>
<tr>
<td>High Acid</td>
<td>Buttermilk</td>
<td>2 Tbsp. Buttermilk to 1 qt. whole milk</td>
<td>Warm to 80˚ F before mixing, then refrigerate the mixture overnight</td>
</tr>
<tr>
<td>Malty</td>
<td>Grape nut cereal</td>
<td>2 Tbsp.</td>
<td>Filter cereal out after soaking for 2 hrs.</td>
</tr>
<tr>
<td>Oxidized</td>
<td>Whole Milk</td>
<td>Expose to sunlight</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Rancid</td>
<td>Whole Milk and 0.3 ml Butyric acid</td>
<td>9:1 ratio</td>
<td>Warm the mixture to about 98˚ F and refrigerate overnight at 45˚ F</td>
</tr>
<tr>
<td>Salty</td>
<td>Salt</td>
<td>1 Tbsp.</td>
<td>Mix two together</td>
</tr>
<tr>
<td>Unclean</td>
<td>Acid and rancid samples</td>
<td>2 qts.</td>
<td></td>
</tr>
<tr>
<td>Cooked</td>
<td>Whole Milk</td>
<td>2 qts.</td>
<td>Heat to near boiling, cool to room temp, then place in refrigerator overnight</td>
</tr>
<tr>
<td>Lacks Freshness</td>
<td>Whole Milk</td>
<td>Expose milk to sunlight</td>
<td>10 minutes</td>
</tr>
</tbody>
</table>
4. Samples to be used in this lesson will be Flat/Watery, Onion, High Acid, Malty, Oxidized, and Rancid.

During Meeting: This meeting should be conducted in a room with a sink with running water.

1. Give general information about milk production and detecting flavor defects in milk. Key points to cover:
 - The flavor of normal milk is pleasantly sweet
 - The milk has a flavor defect if an odor or after taste is detected.
 - In general, five things can produce a flavor defect:
 → health of the cow
 → bacterial action
 → chemical changes
 → feed consumed by the cow
 → absorption of foreign flavors.

2. Review locations of taste receptors by having youth tell the locations of sour, salty, bitter, and sweet sensations.

3. Conduct milk evaluation exercise.
 - Give each youth 6 cups.
 - Have youth label cups 1, 2, 3, 4, 5, 6.
 - Pour each of the 6 prepared milk samples into youth cups.
 - Have youth evaluate milk samples for defects one at a time by performing the following steps:
 1) Note the odor first
 2) Swish each sample around the mouth, being sure to cover the whole tongue and hold the sample in the mouth for no longer than 10 seconds. Then spit the sample into the sink
 3) After each sample, rinse your mouth with water and then spit the water into the sink.
 - Ask the following questions:
 Q: What flavor did you pick up from the sample in cup 1? (2, 3, 4, 5, 6?)
 A: Flat/Watery (1) - tasteless flavor
 Onion (2) - onion flavor
 High Acid (3) - sour flavor
 Malty (4) - walnut or grape nut flavor
 Oxidized (5) - cardboard flavor (sunlight)
 Rancid (6) - pungent
 Q: How do you check to see if the milk you bought has flavor defects?
 A: Smell and taste
 Q: What are the possible causes of flavor defect? (flat-watery, onion, high acid, malty, oxidized and rancid)
 A: Refer to the MILK FLAVOR DEFECT CHART on page 16.
 Q: How can you prevent the defect from occurring?
 A: Refer to the MILK FLAVOR DEFECT CHART on page 16.
 - Give each youth a copy of score sheet and have them fill in the sheet.
1) If you prepared the milk samples as listed above, all samples would have pronounced defect.
2) Instruction for using the score sheet is included on the score sheet
In the sample column, write an (X) beside the **most predominant** flavor defect that is present. Mark only one defect per column.

<table>
<thead>
<tr>
<th>FLAVOR DEFECTS</th>
<th>S</th>
<th>D</th>
<th>P</th>
<th>SAMPLE NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitter</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat-watery</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garlic or Onion</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Acid</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malty</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallic/Oxidized</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rancid</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salty</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unclean</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No defect</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The lower the number, the more objectionable the defect (10 = no defect, - = unusable quality).

In each sample column, write (S), (D) or (P) indicating the intensity of the most objectionable defect.

<table>
<thead>
<tr>
<th>KEY AND SCORING</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = Presence of a defect</td>
</tr>
<tr>
<td>-5 points for defect not identified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLAVOR DEFECTS</th>
<th>S</th>
<th>D</th>
<th>P</th>
<th>SAMPLE NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitter</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat-watery</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garlic or Onion</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Acid</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malty</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallic/Oxidized</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rancid</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salty</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unclean</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No defect</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEY AND SCORING</th>
</tr>
</thead>
<tbody>
<tr>
<td>S = Slight defect</td>
</tr>
<tr>
<td>D = Definite defect</td>
</tr>
<tr>
<td>P = Pronounced defect</td>
</tr>
<tr>
<td>-4 points for each intensity that is incorrect</td>
</tr>
</tbody>
</table>

POSSIBLE SCORE -54 to -4
BACKGROUND INFORMATION

During the early history of the United States, cheese was made on farms for family use and for sale in nearby communities. In Rome, New York, cheese making changed from a family art to a great industry when the first factory was built and began producing cheddar cheese in 1851. Through the application of controlled process methods, American cheese-makers have successfully manufactured virtually all types of cheese and have created distinctive, original, domestic varieties such as Brick, Colby, and Monterey.

CHEESE MAKING

Cheese is the fresh or matured product obtained by draining the whey after coagulating casein, the major protein in milk. The casein is coagulated by acid from selected microorganisms and/or by milk-clotting enzymes added to milk. The resulting curd is cubed, cut, heated, drained, and salted. Fresh, or uncured, cheese, such as cottage and cream, can be eaten immediately.

Ripening, or curing, of the manipulated curd includes exposure to a temperature-humidity controlled environment for a specified length of time. Changes during curing are brought about by specially selected:

- enzymes,
- bacteria,
- mold,
- yeast,
- or combinations of these curing agents in or on the cheese.

During ripening, nutrients, such as protein, fat, and carbohydrate, are changed to simpler compounds that produce the characteristic flavor and affect the final texture of the cheese.

Making natural cheese is an art. It consists of removing most of the milk solids from the milk by coagulating with rennet or a bacterial culture or both, and separating the curd from the whey by heating, draining, and dressing. Various combinations of milk are used to make specific types of cheese. For example, cottage cheese is made from skim milk, cheddar cheese from whole milk, cream cheese from milk plus cream, and Swiss and Edam from mixtures of whole and skim milk. Most cheese produced today is made from heat-treated or pasteurized milk.

CHEESE NUTRIENTS

Cheese is a concentrated source of many of the nutrients of milk, especially casein, calcium, phosphorous, and vitamin A. It is one of nature's most versatile foods. It is nutritious and readily digested.

- To make 1 pound of cheddar cheese it takes approximately 10 lbs. of milk or almost 5 qts.
- Nearly 1/2 of the total solids of whole milk remain in the cheese curd and approximately 4/5 of the milk's original protein.
- Butter fat content is about 20-30% of its total weight.
Milk fat is responsible for much of the characteristic flavor and texture of cheese. Varying amounts of whey are released during the cutting of the cheese curd, which consists of the water-soluble carbohydrate lactose, whey proteins, soluble salts, vitamins such as riboflavin, and other components.

Nutrition information about cheese is provided on the wrapper or container as a service to consumers. The Food and Drug Administration govern the composition of cheese. The federal definitions and standards of identity define the food by specifying:

- the ingredients used;
- the composition (the maximum moisture content and the minimum percentage of fat in the cheese solids or in the total mass);
- the requirements concerning pasteurization of the milk and the minimum ripening period required for each type of cheese; and
- the production procedures, any specific requirements peculiar to a variety or class of cheese.

TYPES OF CHEESE

Natural cheeses are classified according to the processing conditions used. The process factors that distinguish these types are whether the cheese is un-ripened or ripened/aged, the moisture and fat content, and the unique flavor qualities developed by the cheese type.

The distinctive flavor, body, and texture characteristics of the various cheeses on the market are determined by:

1. the kind of milk used;
2. the methods used or coagulating the milk, cutting, cooking and forming the curd;
3. type of culture used;
4. salting; and
5. ripening conditions.

After cheese has been formed into its characteristic shape, it is coated with wax or wrapped and aged. Cheese may be classified as: very hard, hard, semi-soft, or soft.

CHEESE IDENTIFICATION

To identify cheese, one should be able to differentiate it by its body, texture, color, and flavor.

Body is used to designate the physical properties, including firmness, cohesiveness, elasticity, and plasticity. Physical properties of cheese are affected by the methods of processing and the composition of cheese. The physical properties describe the appearance and feeling of the cheese when a plug of it is removed from the cheese with a trier.

Texture is the term used to describe the manner in which the cheese particles are bound together. Close texture shows only a few openings between the particles, whereas open texture shows spaces between the particles.

Color may range from off-white to orange. However, color alone should not be depended upon as distinguishing factor, only as a guide to be used with the other characteristics of the cheese sample.

Flavor is the term used to describe the taste and smell of the products. It is the most critical distinguishing factor in identifying the cheese. It will help distinguish one cheese from another. High-quality cheese has a flavor described as clean, fine, nutty, and pleasantly sweet. How close the cheese flavor comes to this ideal flavor will depend on the type of bacterial activity and chemical changes that occur during the
manufacturing and curing process. Often a body and texture defect will be associated with a specific flavor defect. After you have examined the body and texture of the cheese carefully, you will then determine the flavor by
1) noting the odor of the cheese cube as you pass it slowly under the nose;
2) working a portion of the plug between the thumb and forefingers;
3) smelling for odors; and
4) tasting a small piece of the cheese.

STORAGE TIPS
- Cheese should not be kept outside of the refrigerator for extended periods.
- Exposed to air and heat, cheese dries out and might become moldy.
- Proper storage at 40°F preserves the original flavor and appearance and insures full use of the cheese without waste.
- Use of the original wrappings to protect the cheese is good for refrigerator storage.
- Cheese should be covered tightly to exclude air if large pieces are to be stored for a long period of time.
- Hard cheese such as Cheddar, Swiss, and Parmesan may be kept for several weeks.
- Soft cheese such as cream, cottage, Neufchatel, fresh Ricotta, Brie, and Camembert are highly perishable and should be used within days after purchase.

Most natural cheese can be successfully frozen for 6 to 8 weeks if unopened in the original package.
- After being removed from the freezer, cheese should be thawed in the refrigerator for 24 hours and served soon after thawing.
- The body and texture of the thawed cheese could be crumbly during handing and serving.

Definition of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>the major protein in milk that forms the cheese curd.</td>
</tr>
<tr>
<td>Coagulate</td>
<td>the gathering, or clotting, of solids in a mixture</td>
</tr>
<tr>
<td>Curd</td>
<td>is separated from whey by heating, draining, and pressing. It is cubed, cut, heated and salted.</td>
</tr>
<tr>
<td>Rennet</td>
<td>a protein splitting enzyme used to make cheese and is responsible for the curd formation, comes from the stomach of a calf.</td>
</tr>
<tr>
<td>Whey</td>
<td>the watery by-product drained away from the cheese curd consists of lactose, milk salts, and whey protein suspended in water.</td>
</tr>
</tbody>
</table>
CHEESE IDENTIFICATION AND DESCRIPTION TABLE

<table>
<thead>
<tr>
<th>Name</th>
<th>Body and Texture</th>
<th>Flavor</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>semi-soft, pasty, and crumbly</td>
<td>tangy, peppery, spicy</td>
<td>white marbled with blue-green mold</td>
</tr>
<tr>
<td>Brick</td>
<td>semi-soft, elastic, many small mechanical openings</td>
<td>mild but pungent and sweet</td>
<td>light yellow to orange</td>
</tr>
<tr>
<td>Brie</td>
<td>soft, thin crust, creamy interior</td>
<td>mild to pungent</td>
<td>white crust and creamy yellow interior</td>
</tr>
<tr>
<td>Mild cheddar</td>
<td>firm and smooth, some mechanical openings</td>
<td>mild, nut-like</td>
<td>white to orange</td>
</tr>
<tr>
<td>Sharp cheddar</td>
<td>smooth and waxy, some mechanical openings</td>
<td>sharp, nut-like</td>
<td>white to orange</td>
</tr>
<tr>
<td>Colby</td>
<td>softer, more openings than cheddar</td>
<td>mild to mellow</td>
<td>white to orange</td>
</tr>
<tr>
<td>Cream</td>
<td>soft and smooth</td>
<td>mild, slightly acid</td>
<td>white to light cream</td>
</tr>
<tr>
<td>Edam/Gouda</td>
<td>semi-soft to firm, smooth, small round holes</td>
<td>mild, sometimes salty</td>
<td>creamy yellow with red wax</td>
</tr>
<tr>
<td>Monterey (Jack)</td>
<td>semi-soft to hard, evenly dispersed small openings</td>
<td>mild, mellow</td>
<td>white to light cream</td>
</tr>
<tr>
<td>Mozzarella</td>
<td>semi-soft, plastic</td>
<td>mild delicate</td>
<td>creamy white</td>
</tr>
<tr>
<td>Munster</td>
<td>semi-soft, waxy, small mechanical openings</td>
<td>mild to mellow</td>
<td>yellow, tan, or white surface, creamy inside</td>
</tr>
<tr>
<td>Parmesan</td>
<td>vary hard, granule</td>
<td>sharp</td>
<td>light yellow with brown coating</td>
</tr>
<tr>
<td>Processed American</td>
<td>no holes, soft</td>
<td>mild, sweet</td>
<td>nearly white to orange</td>
</tr>
<tr>
<td>Provolone</td>
<td>hard, stringy</td>
<td>bland to sharp, smoky, and salty</td>
<td>light golden yellow to brown</td>
</tr>
<tr>
<td>Swiss</td>
<td>firm and smooth, medium to large round eyes</td>
<td>sweet, hazel nut-like</td>
<td>pale yellow</td>
</tr>
</tbody>
</table>
LESSON THREE: IDENTIFYING CHEESES

Project Skill: Identifying Different Kinds of Cheeses

Life Skill: Problem Solving

Materials:
• 6 oz. of 9 of the following cheeses: American, Blue, Brick, Brie, Mild Cheddar, Sharp Cheddar, Colby, Cream, Edam / Gouda, Monterey (Jack), Mozzarella, Munster, Parmesan, Provolone, and Swiss
• Plastic bags (9)
• Large paper plates (1 for each student)
• Cheese identification score sheet (one copy for each student)

Before Meeting:
The day before teaching this lesson, prepare the materials listed.
1. Cut each kind of the 9 selected cheeses into pieces about one inch square.
2. Place each kind of cheese in separate plastic bag and label as 1, 2, 3, 4, 5, 6, 7, 8, and 9. Keep a key for your records. Do not write the name of the cheese on the bag!

During Meeting:
1. Give a brief overview about cheese identification:
 Key points to cover:

 Cheese Identification – Four characteristics are used to identify cheeses: body, texture, color, and flavor:
 Body: Physical properties including firmness, cohesiveness, elasticity, and plasticity;
 Texture: The manner in which the cheese particles are knit together,
 Flavor: Taste and smell of the products. It is the most critical distinguishing factor in identifying the cheese. It will help distinguish one similar looking cheese from another. The flavor can be determined by noting the odor of the freshly drawn plug as you pass it slowly under the nose, working a portion of the plug between the thumb and forefingers, smelling for odors, and tasting a small piece of the cheese;
 Color: Ranges from off-white to orange. Color alone should not be a distinguishing factor.

2. Conduct cheese identification exercise:
 • Give each youth 1 plate.
 • Have youth divide it into nine sections and label them 1 through 9.
 • Have each youth come to the front of the room and put a piece of cheese from the numbered plastic bag on the appropriate numbered section on the plate.
 • Have youth identify cheeses one at a time by performing the following steps.
 1) Smell, feel, break apart and taste each sample.
 2) Eat the sample, being sure to cover the whole tongue.
 3) After each sample, rinse your mouth with water and then spit the water into the sink.
• Ask the following questions:
 Q: What flavor did you pick up from the sample in the plate? (1 through 9)
 A: Refer to the table below on Cheese Identification and Description.

 Q: What color did you see? (sample on plate, 1 through 9)
 A: Refer to the table on page 24 on Cheese Identification and Description.

 Q: What does its body / texture look like when you break it apart and feel it?
 A: Refer to the table on page 24 on Cheese Identification and Description.

 Q: How do you identify a kind of cheese?
 A: Smell, feel, and break apart to see the body and texture characteristics. Look at its colors and taste it

• Give each youth a copy of identification sheet and fill in the sheet. Instructions for using the score sheet are included in the identification sheet.
In the sample column, write an (X) opposite the cheese variety.

<table>
<thead>
<tr>
<th>CHEESE VARIETIES</th>
<th>SAMPLE NUMBER</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blue</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2. Brick</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Brie/Camembert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Cheddar (mild)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Cheddar (sharp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Colby</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Cream/Neufchatel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Edam/Gouda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Monterey (Jack)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Mozzarella/Pizza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Munster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Parmesan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Processed American</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Provolone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Swiss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The same variety of cheese can be used more than once.

POSSIBLE SCORE -54 to 0

KEY AND SCORING

X = Cheese variety identified

-6 points for each cheese not identified correctly
ICE CREAM MAKING

Ice cream is made from many ingredients. The differences among ice creams are influenced by the ingredients used. Each of these ingredients performs an essential task.

Milk fat - Rich mellow milk fat imparts a full creamy flavor. It produces a smooth texture and helps ice cream resist melting.

Nonfat milk - derived solids - When water and milk fat are removed from whole milk, the part remaining is nonfat milk solids. These solids add just enough influence to round out the delicate taste and tend to give a smooth, compact texture to Ice cream.

Sweeteners - Many kinds of nutritive sweeteners are used, the most common being:
- sucrose (cane or beet sugars)
- corn syrup and corn syrup solids
- maple sugar
- honey
- invert sugar

They enhance the sweetness flavor in balance with the milk fat.

Egg yolk solids - Egg yolks add richness, food value, and a delicate flavor. They improve whipping ability.

Stabilizers - Stabilizer prevent the formation of large, coarse ice crystals. They have a high water-holding capacity and form a film around tiny drops of water.

Emulsifiers - Emulsifiers improve whipping quality and give smooth, dry texture.

Flavorings - Spices, fruit and fruit juice, chocolate, nutmeats, candy, cookies, pie, and cake are a few of the many flavoring ingredients used.

Acid ingredients - Tartness in fruit sherbets and ice comes from the fruits used and fruit acid.

Air and overrun - The air incorporated into the ice cream mix during freezing. Adds volume to the ice cream.

Ingredients must be declared in descending order of their relative amounts used in the mix recipe. Each ingredient may be declared by an acceptable common or usual name, such as milk, cream, sugar, eggs. Any added coloring should also be declared.

Great care is taken to select the right ingredients in the right proportions. Expertise and continuous care are needed throughout the manufacturing process, but the final ice cream can be no higher in quality than the original mix.

1) Blending the mix comes first. The ingredients blended might include milk, cream, condensed milk, and syrup. Dry items such as nonfat dry milk, dried eggs, sugar, and stabilizers are added carefully to prevent lumps.

2) The mix is then pasteurized. This is rapid heating of the mix to an established minimum temperature, holding at that temperature for a
specified time, and then rapid cooling. **Pasteurization** destroys harmful bacteria, aids in blending ingredients, improves flavor and keeping quality, and produces a more uniform product.

3) During pasteurization, the mix is homogenized. The mix is forced through tiny valve openings. Fat globules are "squeezed" to possibly one-tenth normal size. From the homogenizer, the ice cream mix is passed through a cooler. It is then aged in a refrigerated vat for 3 to 4 hours, at a temperature of 40° F or lower. Then the ice cream will be frozen and hardened.

4) Fast freezing is essential to obtaining a smooth product. Ice crystals that are formed quickly are smaller than those formed slowly. While freezing quickly, the mix is rapidly agitated to remove heat and incorporated air into the mix by rotating blades. In addition, the ice cream must be hardened. Rapid hardening at -20° F or colder, prevents large ice crystals from forming.

ICE CREAM JUDGING

The technique of judging ice cream is different in many respects from the scoring of other dairy products. Only vanilla ice cream is used in a judging contest. The ice cream score sheet is divided into two parts: **flavor & body and texture**. In judging ice cream, an ice cream sample is very seldom given a full score on flavor or body and texture.

Ice cream should be stored between -10° F and -25° F., and must be warmed to 5° F to 10° F for judging. At this temperature, the product is still partially frozen, which allows for the evaluation of the body and texture. A fairly accurate impression of its body and texture characteristics may be noted by the way the ice cream responds to dipping. Notice the way the ice cream cuts and the feel of the dipper as it cutting edge passes through the ice cream. It is important to note whether the ice cream tends to curl up behind the dipper, thus indicating excessive gumminess or stickiness.

After the sample has been taken from the container, the examination for further body and texture characteristics and for flavor may begin at once. Several determinations must be made simultaneously once the sample is placed in the mouth. By pressing a small portion of the frozen ice cream against the roof of the mouth, the smoothness, the coarseness, the presence of sandiness and the relative size of the ice crystals may be determined.

Vanilla ice cream should be pleasantly sweet, having a creamy, delicate vanilla flavor that cleans up well, leaving only a very pleasant after taste. The flavor of any one ingredient should not be so strong that it predominates over the flavor of the other ingredients when first tasted.

ICE CREAM NUTRIENTS

Milk fat, protein, calcium and riboflavin (vitamin B2) are the main nutrients in ice cream. Ice cream is a natural for dessert because its caloric value is moderate, and its nutrient value helps to meet daily nutrient needs. It is mandatory to declare on the label for the nutrients that have been added.

STORAGE TIPS

- Tightly covered ice cream stored at 0° F will keep up to two months.
- Ice cream that partially thaws and then re-hardens forms large crystals, resulting in an unpleasantly coarse, icy texture.
- When ice cream taken from the freezer is so hard that the spoon bends, the freezer temperature is around the zero degree range.
Before serving, ice cream should be transferred from freezer to refrigerator for up to 30 minutes, it will soften enough to spoon out readily but won't have completely thawed.

After serving, press a piece of foil or plastic wrap over the exposed surface of the unused ice cream before re-closing the carton. This protects the ice cream from absorbing freezer odors and prohibits the formation of a tough, discolored layer caused by evaporation from the exposed surface.

Definition of Terms

Frozen yogurt - has less milk fat and higher acidity than ice cream and less sugar than sherbet. Also, a yogurt culture has been used to produce the mix base.

Homogenized - forcing fat particles through small openings to even out the distribution in the mixture.

Ice Cream – refers to frozen deserts made from dairy products, ranging from fat free to 20% or more of milk fat.

Pasteurization - heating of the mixture to kill undesirable bacteria.

Soft ice cream - these products are soft and ready to eat when drawn from the freezer. The total solids in the mix is lower than for ice cream.
ICE CREAM BODY AND TEXTURE DEFECTS TABLE

<table>
<thead>
<tr>
<th>Name</th>
<th>Major Characteristics</th>
<th>How to Detect</th>
<th>Possible Causes</th>
</tr>
</thead>
</table>
| Coarse/Icy | Rough appearance, large ice crystals, feeling of unusual coldness in the mouth | Felt easily between teeth or with tongue due to rapid melting of ice crystals | a) Slow freezing of the solution at the freezer
b) Frozen ice cream is exposed to temp. fluctuation |
| Crumbly | A tendency of falling apart when the ice cream is dipped | Response to dipping | Low solids, low stabilizer |
| Fluffy | Light, airy ice cream | Response to dipping and tasting | Too many emulsifiers (egg yolk solids, mono- and diglycerides, and fatty acid esters) |
| Gummy | Sticky body, curls up behind the dipper leaving coarse, irregular waves | Response to dipping | Excessive use of stabilizer, sweetener |
| Sandy | Hard, uniform particles, crystals of lactose | A thin layer of ice cream put against the roof of the mouth with the tongue. Rough feel. | A high total solids, age, and heat shocking resulting in the milk sugar lactose crystallizing |
| Soggy | Heavy, mushy | Keeps its shape when melting | Too many stabilizers |
| Weak | Soft | Body melts easily | Not enough milk fat, milk fat solids, or total milk solids |
ICE CREAM FLAVOR DEFECTS TABLE

<table>
<thead>
<tr>
<th>Name</th>
<th>Major Characteristics</th>
<th>Possible Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooked</td>
<td>Cooked flavor</td>
<td>A) The mix heated too high and held too long at that temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B) The use of condensed milk or dried milk powder to build the total solids in the mix</td>
</tr>
<tr>
<td>Lacks Flavoring</td>
<td>Weak vanilla taste</td>
<td>Not enough vanilla flavoring</td>
</tr>
<tr>
<td>Too High Flavor</td>
<td>Strong, dominant vanilla taste</td>
<td>Futile attempt to enhance flavor by using too much vanilla</td>
</tr>
<tr>
<td>Unnatural Flavor</td>
<td>Sharp and burning sensation on the sides of the tongue</td>
<td>Low quality vanilla</td>
</tr>
<tr>
<td>High Acid</td>
<td>High acid flavor</td>
<td>The development of lactic acid in one or more of the dairy products used</td>
</tr>
<tr>
<td>Lacks Fine Flavor</td>
<td>Lacks ideal vanilla ice cream flavor</td>
<td>Lacks ideal vanilla ice cream flavor</td>
</tr>
<tr>
<td>Lacks Freshness</td>
<td>Slight storage flavor observed during latter part of tasting time</td>
<td>Storage problem creating decomposition of proteins due to long cold storage</td>
</tr>
<tr>
<td>Metallic</td>
<td>Puckery, off-flavor sensation in the clean-up</td>
<td>Defect just before flavor becomes oxidized; shelf-life problem</td>
</tr>
<tr>
<td>Old Ingredients</td>
<td>Aged ingredient flavor persists as an aftertaste</td>
<td>Milk protein has degraded while storage prior to use as an ingredient</td>
</tr>
<tr>
<td>Oxidized</td>
<td>Metallic flavor</td>
<td>Copper metal has been in contact with the milk during handling</td>
</tr>
<tr>
<td>Rancid</td>
<td>Slight soapy taste</td>
<td>Poor temperature control of raw milk which permitted lipase enzyme activity</td>
</tr>
<tr>
<td>Salty</td>
<td>Slight salty taste</td>
<td>Too much whey</td>
</tr>
<tr>
<td>Storage</td>
<td>A lack of freshness</td>
<td>Held for a considerable length of time in cold storage, low activity</td>
</tr>
<tr>
<td>Lacks Sweetness</td>
<td></td>
<td>Failure to add enough syrup or sucrose for a balanced flavor</td>
</tr>
<tr>
<td>Syrup Flavor</td>
<td>Overpowering syrup flavor</td>
<td>Too much corn syrup and corn syrup solids, maple syrup or honey in an attempt to produce body</td>
</tr>
<tr>
<td>Too Sweet</td>
<td>Sweetness that overpowers vanilla flavor</td>
<td>Too much sucrose (cane or beet sugars) in the attempt to enhance the creamy flavor</td>
</tr>
</tbody>
</table>
LESSON FOUR: EVALUATING ICE CREAM

Project Skill: Detecting Flavor Defects in Ice Cream
Life Skill: Problem Solving

Materials:
- Expensive brand (may be $3-6 a half gal.) *Ingredients: fresh milk, pure sugar, real cream, nothing artificial*
- Low priced brand (may be $1-2 half gal.) *Ingredients: milk cream, sugar, sweetener, buttermilk, stabilizer, artificial color.*
- Ice cream score sheet (one copy for each youth)
- 2 oz paper cups (1 for each youth)
- Plastic spoons (1 for each youth)

Before Meeting:
The day before teaching this lesson, prepare the materials listed.
1. Store the samples in freezer at about -10˚ to -25˚ F.

During Meeting:
1. Give a general overview on detecting flavor defects in ice cream.
 Key points to cover on evaluation:
 - Several determinations must be made simultaneously once the sample is placed in the mouth.
 - The flavor of normal ice cream should be pleasantly sweet.
 - The flavor of any one ingredient should not be so strong that it predominates over the flavor of the other ingredients when first tasted.
 - The defects in ice cream are determined by its body/texture and flavor.
 Body / Texture: The physical properties of ice cream, including ice crystals, low solids, sticky body, sandy texture, can be noted by the way the ice cream responds to dipping.
 Flavor: Taste and smell of the products, like cooked, high acid, rancid, storage flavor, etc.

2. Conduct ice cream evaluation exercise.
 Special Note: Use actual commercial ice cream samples that have not been doctored.
 For this reason we have provided sample questions to ask, but cannot provide correct answers for them. Answers will depend on the commercial ice cream sample used in the lesson.

 We suggest expensive and low-priced brands to show the greatest quality difference. Expensive ice cream does not always mean high quality, since brand ingredients affect the quality of the ice cream. The characteristics of typical flavor defects and the major body and texture defects will be described in the table on pages 32 and 33.
a) Give each youth 1 cup and a spoon.

b) Put a scoop of one of the sample into youth cups.

c) Have youth evaluate ice cream for defects one at a time by performing the following steps.

1) Note the odor first.
2) Place one spoon of ice cream into the mouth, manipulating the sample between the tongue and palate. Note the taste and odor sensation.
3) Swallow the first sample when the flavor defects have been determined.
4) Ask the following questions:
 Q: What flavor did you pick up from the sample?
 Q: Where did you pick up the flavor?
5) Fill in the score sheet.
6) If there is more than one defect, mark all the defects found and choose the most severe one. The lower the score is, the more severe the defects are.
7) After the flavor has been determined, place a second spoon of the same sample into the mouth.
8) Note the smoothness, coarseness, the presence of sandiness, and the relative size of the ice crystals by pressing a small portion of the ice cream against the roof of the mouth to determine the body and texture defects. Also scrape the spoon face through the ice cream. Notice if sticky, crumbly or gelatin-like characteristics are present.
9) Ask the following questions:
 Q: Did you notice any coarseness, sandiness or ice crystals? (for coarse and sandy ice cream)
 Q: Did the ice cream become liquid as soon as you put it in your mouth? (for crumbly ice cream)
 Q: How did the ice cream behave as you scraped the surface with the open face of your spoon? (Was it sticky? Was the body crumbly? Did the ice cream have a gelatin appearance? - indicates a heavy body due to over stabilizing)
 Q: How do you check to see if the ice cream you bought has flavor and body/texture defects?
 A: Smell, taste, feel in the mouth, and the way the ice cream responds to dipping.
10) Fill in the score sheet.

If there is more than one defect, mark all the defects found and choose the most severe one. The lower the score is, the more severe the defects are.

d) Use the same procedures described above to evaluate sample 2.
ICE CREAM SCORESHEET
4-H/FFA DAIRY FOODS CONTEST

In the sample column, write an (X) beside the flavor and body and texture defect(s) that are present. **Mark up to 3 defects.**

<table>
<thead>
<tr>
<th>BODY & TEXTURE DEFECTS</th>
<th>S</th>
<th>D</th>
<th>P</th>
<th>SAMPLE NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse/Icy</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crumbly</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluffy</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gummy</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soggy</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLAVOR DEFECTS</th>
<th>S</th>
<th>D</th>
<th>P</th>
<th>SAMPLE NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooked</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacks flavoring</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Too high flavor</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnatural flavor</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High acid</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacks fine flavor</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacks freshness</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallic</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old ingredients</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidized</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rancid</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salty</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacks sweetness</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syrup flavor</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Too sweet</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The lower the number, the more objectionable the defect (10 = no defect, -- = unusable quality).

In each sample column, write (S), (D) or (P) indicating the intensity of the most objectionable flavor defect and body/texture defect.

<table>
<thead>
<tr>
<th></th>
<th>SAMPLE NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavor Intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body & Texture Intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POSSIBLE SCORE –54 to 0

KEY AND SCORING

X = Presence of defect

-1 point for each defect not identified

KEY AND SCORING

X = Presence of defect

-2 points for each defect not identified

KEY AND SCORING

S = Slight defect
D = Definite defect
P = Pronounced defect

-3 points for each intensity that is incorrect

KEY AND SCORING

X = Presence of defect

-1 point for each defect not identified
BACKGROUND INFORMATION

Modern technology now makes it possible to manufacture a variety of items, including imitation food products that look like real foods. These imitation products may look and taste like many of the real foods you have been eating all your life. However, imitations are simply not as nutritious as real foods.

You can count on real foods from the Basic Four Food Groups (milk, meat, fruit, vegetable and grain) to supply you with all of the 50 or so nutrients you must have for good health. Imitation products do not provide all or as much of these nutrients as their traditional counterparts do. In fact, the U.S. Food and Drug Administration defines the word imitation to mean “nutritionally inferior.”

DISTINGUISHING REAL PRODUCTS FROM NON-DAIRY PRODUCTS

Imitation products have no legal standard of identity. Manufacturers are free to change ingredients whenever they want. So when you buy an imitation cheese you do not always know what you are getting. You just cannot count on imitations to be consistent.

Dairy foods are frequently imitated. There are imitations for over a dozen real cheeses, including Colby, cheddar, cream, mozzarella, and even American pasteurized processed cheese. In addition, there are products that copy such real foods as butter, cream, whipped cream, sour cream and ice cream. In some areas of the country even imitations of milk are being sold.

It would probably be difficult to remember the name of every imitation product. However, you can spot imitation products if you remember the three categories of food where imitations are likely to be found, which are dairy foods, juices, and processed meats. In addition, you should also look for the word “imitation”, “non-dairy” or “substitute” on the food package since the U.S. Food and Drug Administration requires that any food made to imitate and substitute for a real food and which is nutritionally inferior to the real food must bear the label “imitation.”

Most food manufacturers print a list of ingredients on their food packages. These ingredient lists can be another tool for telling real and non-dairy products apart. To identify real foods, examine the ingredient list of foods commonly imitated.

Finally you should remember which foods are imitated, how imitations are merchandised, and how you can use the food labels to sort real foods from imitations. Take advantage of industrial trademarks that identify real products such as the dairy industry trademark, the REAL seal. The symbol found only on real dairy foods, is your assurance that the food was made with milk. Not all dairy foods carry the REAL seal. So you will have to read the labels to be sure the product is not an imitation. But when you see the REAL seal, you know it is real.

In modern society, where buyers must beware, food selection is a responsibility. To get the most for your money and the best for your health, take time to make sure you always get the real thing.
INGREDIENTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half and Half Coffee Cream</td>
<td>Milk, cream, sodium citrate, disodium phosphate</td>
</tr>
<tr>
<td>Non-Dairy Creamer (non-dairy)</td>
<td>Water, corn syrup solids, partially hydrogenated soybean or cottonseed oil,</td>
</tr>
<tr>
<td></td>
<td>sodium caseinate, dipotassium phosphate, polysorbate 60, sodium stearoyl</td>
</tr>
<tr>
<td></td>
<td>lactylate, artificial flavor, carrageenan, artificial color</td>
</tr>
<tr>
<td>Sour Cream</td>
<td>Cultured cream, skim milk, enzymes</td>
</tr>
<tr>
<td>Low Fat Sour Cream</td>
<td>Cultured non-fat milk, cultured milk, whey protein concentrate, food starch</td>
</tr>
<tr>
<td></td>
<td>modified, artificial color, gelatin, natural flavor</td>
</tr>
<tr>
<td>Whipped Cream</td>
<td>Cream, non-fat milk solids, mono and diglycerides, polysorbate 80,</td>
</tr>
<tr>
<td></td>
<td>carrageenan</td>
</tr>
<tr>
<td>Whipped Toppings (non-dairy)</td>
<td>Water, partially hydrogenated vegetable oil (palm kernel, cottonseed, and/or</td>
</tr>
<tr>
<td></td>
<td>soybean oil), corn syrup, sortitol, fructose, sodium caseinate, cellulose</td>
</tr>
<tr>
<td></td>
<td>gel, corn starch, mono- and diglycerides, lecithin, polysorbate 60,</td>
</tr>
<tr>
<td></td>
<td>polysorbate 80, sortitan monostearate, disodium phosphate, sodium alginate,</td>
</tr>
<tr>
<td></td>
<td>salt, artificial and natural flavors</td>
</tr>
<tr>
<td>Ice Cream</td>
<td>Milk, cream, sugar, natural flavor</td>
</tr>
<tr>
<td>Fat Free Ice Cream</td>
<td>Sugar, condensed skim milk, corn syrup, whey protein concentrate, mono- and</td>
</tr>
<tr>
<td></td>
<td>diglycerides, locust bean gum, guar gum, carrageenan, dextrose, maltodextrin,</td>
</tr>
<tr>
<td></td>
<td>natural and artificial flavor, vitamin A palmitate, annatto color, water</td>
</tr>
<tr>
<td>Cheese</td>
<td>Pasteurized milk, cheese culture, salt, enzymes, annatto</td>
</tr>
<tr>
<td>Vegetable Cheese (non-dairy)</td>
<td>Veggie milk (filtered water, organic soymilk solids, organic tofu),</td>
</tr>
<tr>
<td></td>
<td>isolated soy protein, brown rice maltodextrin and protein, evaporated</td>
</tr>
<tr>
<td></td>
<td>cane juice, sea salt, oat fiber, vegetable mono- and diglycerides, vitamin-</td>
</tr>
<tr>
<td></td>
<td>mineral blend (tricalcium phosphate, vitamin A palmitate, vitamin C, ferric</td>
</tr>
<tr>
<td></td>
<td>orthophosphate, vitamin E, vitamin D3, vitamin B6, vitamin B12, folic acid,</td>
</tr>
<tr>
<td></td>
<td>casein, unhydrogenated canola vegetable oil, natural flavors, sodium</td>
</tr>
<tr>
<td></td>
<td>phosphate, tricalcium phosphates, corn starch, sea salt, citric acid,</td>
</tr>
<tr>
<td></td>
<td>sorbic acid, beta apo carotenal</td>
</tr>
<tr>
<td>Butter</td>
<td>Cream, salt, annatto</td>
</tr>
<tr>
<td>Margarine (non-dairy)</td>
<td>Liquid soybean oil, partially hydrogenated soybean oil, water, buttermilk,</td>
</tr>
<tr>
<td></td>
<td>salt, soy lecithin, vegetable mono- and diglycerides, sodium benzoate,</td>
</tr>
<tr>
<td></td>
<td>artificial flavor, vitamin A palmitate, beta carotene</td>
</tr>
</tbody>
</table>
LESSON FIVE: DIFFERENTIATING REAL AND IMITATION DAIRY PRODUCTS

Project Skill: Identifying Real and Imitation Dairy Products

Life Skill: Problem Solving

Materials:
- Coffee cream
- Sour cream
- Whipped toppings
- Ice cream
- Cheese
- Butter
- Non-dairy creamer
- Fat Free sour cream
- Whipped cream
- Margarine
- Imitation cheese
- Score sheet on problem solving (one copy for each youth)

Before Meeting:
The day before teaching this lesson, purchase the materials listed above.

During Meeting:
1. Give a general overview on identifying real and artificial dairy products.
 Key points to cover:
 - Imitation products may look and taste like many of the real foods you have been eating all your life, but they are not as nutritious as real foods.
 - You don't always know when you are buying imitation foods;
 - Remember that imitations are likely to be found in dairy foods.
 How do you spot imitation products?
 - Look for the word "imitation" on the food label and it is required that all the imitation foods should bear this label.
 - Look for the term "non-dairy" on the labels of foods normally made with milk.
 - Look at a list of ingredients on food packages and these ingredient lists can be another tool for telling dairy foods and non-dairy foods.
 - Imitations are sometimes cheaper than real foods.
 - Things to keep in mind while shopping:
 1) Take your time shopping for food.
 2) Examine packages carefully, especially labels and ingredients.
 3) Make sure you are getting what you think you are buying.
 - Imitations are often located among real foods in the grocery store.

2. Conduct identification exercise:

 Special Note: We are using actual commercial samples that have not been doctored. For this reason we have provided sample questions to ask, but cannot provide correct answers for them. Answers will depend on the commercial samples used in the lesson.
a) Give each youth two sample products.
b) Have youth identify real dairy products and non-dairy products by performing the following steps.
 - Look for the word "imitation" or fat-free on the food package.
 - Look for the term "non-dairy" on the labels of foods normally made with milk.
 - Compare labels of ingredient lists for real dairy product and non-dairy one.
 - Examine the ingredient list of foods commonly imitated, and remember:
 - the first ingredient of a real cheese is milk or cheese.
 - the first ingredient of a real cream is cream.
 - the first ingredient of a real butter is butter.
 - real dairy foods do not contain vegetable oil.
 - Compare the tastes of each of the two samples, paying particular attention to mouth feel and flavor clean-up.
 - Ask the following questions:
 Q: What kinds of foods usually have imitations?
 A: Dairy foods, juices and processed meats.
 Q: Do broccoli and rice have imitations?
 A: No.
 Q: Among all the samples, which ones bear "imitation", "non-dairy", or "substitute" food labels?
 Q: What differences have you noticed when you are comparing the ingredient labels of coffee cream and non-dairy creamer, sour cream and imitation sour cream; whipped toppings and whipped cream; ice cream and millarine; cheese and imitation cheese; butter and margarine?
 A: Refer to Ingredient table included in this lesson.
 Q: Where do you usually find non-dairy products in the grocery store?
 A: Non-dairy products are often found among real foods.
 Q: How do you check to see if the dairy products you pick up from the store are real ones or artificial ones?
 A: By looking at the label on the food package and their lists of ingredients.

 - Fill in the score sheet.
PART I IDENTIFICATION OF REAL VS. NON-DAIRY PRODUCT

In the sample column, write (D) or (N) in the space opposite the product.

<table>
<thead>
<tr>
<th>PRODUCTS</th>
<th>SAMPLE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CREAMS</td>
<td></td>
</tr>
<tr>
<td>Coffee cream (Half & Half)</td>
<td></td>
</tr>
<tr>
<td>Non-dairy creamer (Coffee Rich)</td>
<td></td>
</tr>
<tr>
<td>Condensed milk</td>
<td></td>
</tr>
<tr>
<td>Filled milk (Milnot)</td>
<td></td>
</tr>
<tr>
<td>CULTURED PRODUCTS</td>
<td></td>
</tr>
<tr>
<td>Tofu</td>
<td></td>
</tr>
<tr>
<td>Yogurt (plain)</td>
<td></td>
</tr>
<tr>
<td>Sour cream</td>
<td></td>
</tr>
<tr>
<td>“No Fat” Sour cream</td>
<td></td>
</tr>
<tr>
<td>TOPPINGS</td>
<td></td>
</tr>
<tr>
<td>Whipped toppings</td>
<td></td>
</tr>
<tr>
<td>Whipped cream</td>
<td></td>
</tr>
<tr>
<td>DAIRY FROZEN DESSERTS</td>
<td></td>
</tr>
<tr>
<td>“No Fat” Ice Cream</td>
<td></td>
</tr>
<tr>
<td>Ice Cream</td>
<td></td>
</tr>
<tr>
<td>CHEESES</td>
<td></td>
</tr>
<tr>
<td>Cheese</td>
<td></td>
</tr>
<tr>
<td>Vegetable cheese</td>
<td></td>
</tr>
<tr>
<td>SPREAD</td>
<td></td>
</tr>
<tr>
<td>Butter</td>
<td></td>
</tr>
<tr>
<td>Margarine</td>
<td></td>
</tr>
</tbody>
</table>

KEY AND SCORING

D = Real dairy product
N = Non-dairy product
-3 points for an incorrect identification
-3 points for incorrect classification as real or non-dairy product

PART II QUESTIONS ON DAIRY PRODUCT/NON-DAIRY PRODUCT ISSUES

Place an (X) over the correct answer.

1. a b c d e
2. a b c d e
3. a b c d e
4. a b c d e
5. a b c d e
6. a b c d e

SCORING

-3 points for each incorrect answer

POSSIBLE SCORE -54 to 0
BACKGROUND INFORMATION

The purpose of judging milking machine parts is to test the contestants' knowledge about the important aspects of the part's condition, maintenance and sanitation. Rubber parts, including flexible plastic, will be displayed and contestants will look for the presence of five specific defects. The unit may exhibit all or none of these.

It is very important to evaluate sediment pads because sediment reflects the handling condition under which milk was collected. Sediment may enter milk from improperly cleaned cows, from the milking environment (especially when milking machines are allowed to suck in air and soiled water during application to the cow's teats), and from improperly cleaned equipment.

JUDGING DEFECTS FOR MILK MACHINE PARTS

There are five possible defects of rubber parts:

1) Dirty or Milkstone - evidenced by gray and/or chalky soil in most instances. Even a small soiled area on one part is sufficient to downgrade the unit. Light films of soil are also criticized. Absorbed fat may exist only when parts are grossly neglected for long periods and poor cleaning practices are used. The defects are evidenced by a sticky, greasy appearance.

2) Checked or blistered - pans that have been used too long and are poorly cleaned. Milk and soil can penetrate pores in the rubber giving rise to a growth of microorganisms that produce compounds that speed deterioration of the rubber. High bacteria counts will often result. These inflations will lack resiliency necessary to properly massage the teats during milking.

3) Leaky parts - allow air into the system, causing fluctuating vacuum, and possibly contaminating the milk with air borne bacteria. Holes in air hoses and inflations are frequently observed.

4) Poorly fitted parts - inflations that are obviously not designed to fit the inflation shell, broken hoses or inflations that are too short, and hoses that are split so they tend to slip off the tube to which they are connected. A split hose may be both leaky and poorly fitted if the split portion exceeds the length of the tube on which it is placed.

There are five possible defects of metal parts, which include metal or rigid plastic parts:

1) Dirty or milkstone - is checked on the score sheet when visible soil or chalky material is observed on one or more parts.

2) Badly dented or damaged - indicates when damage is sufficient to interfere with the function of the part or make it difficult to clean and sanitize.

3) A pitted or corroded part -harbors soil and microorganisms. Seldom is adequate cleaning and sanitization possible. Corrosion includes rust and darkened surfaces that often occur...
when stainless steel is improperly welded.

4) **Open seams** - also harbor soil and microorganisms. Not only are broken joints involved but heads of screws and imperfectly pressed joints are placed in this category, even if they occur on the outside of the part.

A milker unit without defects scores 4. Deduct 0.5 point for each defect marked. If, for example, rubber parts are leaky and metal parts are dirty or milkstone or any combination of defects can reduce a score to zero. Milker units are scored as a unit and are not to be handled. They may represent bucket type or pipeline milkers. Normal score is 0 through 4 points.

JUDGING DEFECTS OF SEDIMENT PADS

Sediment in bottled milk is uncommon, but varying amounts may be noted in bulk milk as the milk plant receives it.

The sediment content of milk is scored on the FFA score sheet by using the chart shown on page 45. This chart is widely used in industry and regulatory officials for checking raw milk quality.

For milk in cans, one point of milk is taken from the bottom of an unstirred can by the use of the special sediment tester. The sample is forced through a 1/4-inch-diameter filter disc, which is made especially for the purpose and fitted into a specially constructed sediment tester.

For bulk milk in farm tanks, a pink sample is taken of well-mixed milk in the tank and run through a special sediment tester fitted with a small orifice 0.4 inch in diameter. The disc is then compared with the photographs of USDA Standards shown on page 45.

The following system of scoring is used in the FFA contest:

- 0 mg. sediment, mark off 0 pts;
- more than 0.0 mg. but not more than 0.5 mg. equivalent, mark off 1 pt;
- more than 0.5 mg. equivalent but not more than 1.5 mg. equivalent, mark off 2 pts;
- more than 1.5 mg. equivalent but not more than 2.5 mg. equivalent, mark off 3 pts;
- more than 2.5 mg. equivalent, mark off 4 pts.

Score whole points only.
Characteristics of Each Defect for Milking Machines

<table>
<thead>
<tr>
<th>Rubber Parts</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirty or Milkstone</td>
<td>gray to white soils, absorbed fat</td>
</tr>
<tr>
<td>Checkered or Blistered or</td>
<td>soil penetrates pores and cracks in the rubber giving rise to growth of microorganisms which produce compounds that speed deterioration of the rubber</td>
</tr>
<tr>
<td>Cracked</td>
<td></td>
</tr>
<tr>
<td>Leaky</td>
<td>holes in air hoses and inflations are frequently observed</td>
</tr>
<tr>
<td>Poorly fitted</td>
<td>inflations that are obviously not designed to fit the inflation shell; and connecting hoses do not attach correctly.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metal Parts</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirty or Milkstone</td>
<td>visible soil is observed on one or more parts; the presence of white chalky materials</td>
</tr>
<tr>
<td>Badly Dented or Damaged</td>
<td>damage is sufficient to interfere with the function of the part</td>
</tr>
<tr>
<td>Pitted or Corroded</td>
<td>rusts and the darkened surfaces that often occur when stainless steel is improperly welded</td>
</tr>
<tr>
<td>Open Seams</td>
<td>broken joints and heads of screws; splits and cracks in the metal</td>
</tr>
</tbody>
</table>

Sediment Pad Scoring

![Sediment Pad Scoring](image)

U.S. DEPARTMENT OF AGRICULTURE SEDIMENT STANDARDS FOR MILK AND MILK PRODUCTS
(Number under each disk shows amount of sediment in a pint of milk or in a designated quantity of milk product)
Reprinted by the Dairy Division, Consumer and Marketing Service. For use in educational programs on improving the quality of milk and milk products.
LESSON SIX: EVALUATING MILKING MACHINE PARTS

Project Skill: Judging Milker Unit and Sediment
Life Skill: Problem Solving

Materials:
Pictures of sediment discs with different diameters (0 mg.; 0.025 mg.; 0.050 mg.; 0.075 mg.; 0.10 mg.; 0.20 mg.; 0.30 mg.; 0.50 mg.; 1.00 mg.; 2.50 mg.; Sample pictures were given in the lesson)
- Pictures of USDA Standard discs (sample pictures were given in the lesson)
- MILK SEDIMENT & MILKER UNIT SCORE SHEET (one copy for each student)
- Slide sets on Milk Quality (milking equipment parts and defects - Media Center at Purdue Undergraduate Library)

Before Meeting:
The day before teaching this lesson, prepare the materials listed.
1. Make copies of the pictures for each youth in the class.
2. If possible, contact AMPI Lab. (317) 842-7818 and request actual graded pads for training program.

During Meeting: This meeting can be conducted at a dairy farm.
1. Give general information about milking machines and sediment pads;

Key points to cover:
Judging Milking Machine: - The purpose of judging milker unit parts is to test the contestant's knowledge of the important aspects of condition, maintenance and sanitation of milking equipment parts.
- Two parts of the milking machine are to be evaluated: rubber parts and metal parts.
- Defects for rubber parts are:
 - dirty or milkstone
 - checked or blistered or cracked
 - leaky
 - poorly fitted
- Defects for metal parts are:
 - dirty or milkstone
 - badly dented or damaged
 - pitted or corroded
 - open seams, metal cracks
- The normal score for milking machine is 0 through 4 points. Each defect has a point of 0.5.
Judging Sediment: - Sediment may enter milk from improperly cleaned cows, from the milking environment and from improperly cleaned equipment.
- Sediment pads are judged according to the standards published by the U.S. Department of Agriculture.
- A completely clean pad receives a score of 8 points. As more sediments are collected on the pad to increase the density of sediment on the pad, the grade value goes down in increments of 2 (e.g. 8-6-4-2-0). Therefore, the lowest grade is zero.
- Samples are judged according to comparison with standard disc and grade assigned.

2. Conduct judging exercise:

a) Judging milking machine part (visit to a dairy farm).
 1) Have youth check the rubber and metal parts of the machine.
 2) Judge defects based on the characteristics given on Table One.
 3) Ask the following questions:
 Q. What defect did you find in rubber parts or metal parts?
 A. Based on a condition of actual part.
 Q. How did the defect you found look like?
 A. Refer to Table One for the answer.
 Q. What score will you give for the rubber parts or metal parts?
 A. One point is subtracted for each of the defects listed on the Table on page 45. A combination of defects will reduce a score to zero.

4) Fill the score sheet for milker unit part

b) Judging sediment pads.
 1) Have youth exam the pictures of sediment pad disc on page.
 2) Compare the pictures with pictures of standard disc.
 3) Ask the following questions:
 Q. What are the differences you found between the sample discs and standard discs?
 A. There are sediments in the sediment discs, but not in the standard discs.
 Q. What score would you give to discs of 0 mg.; 0.025 mg … and so on?
 A. Discs showing less sediment will receive higher scores.

3. Fill the score sheet for the sediment pad part.
In the sample column, write an (X) beside the defect(s) that is(are) present. Mark up to 3 defects.

<table>
<thead>
<tr>
<th>MILKER UNIT DEFECTS</th>
<th>SAMPLE NUMBER</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber Parts/Plastic</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>Dirty or Milkstone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checked or Blistered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poorly Fitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal Parts/Rigid Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dirty or Milkstone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Badly Dented or Damaged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitted or Corroded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Seams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In each sample column, write the sediment pad grade (0-4 range).

<table>
<thead>
<tr>
<th>MILKER UNIT DEFECTS</th>
<th>SAMPLE NUMBER</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Sediment Grade</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
</tbody>
</table>

POSSIBLE SCORE -54 to 0

KEY AND SCORING

X = Presence of a defect
-2 points for each defect improperly identified

0 = No sediment
4 = The most sediment
-3 points for each incorrect sediment grade
SAMPLE QUESTIONS

The following questions are samples of what participants will encounter in the Dairy Foods Judging Contest. All participants will answer the first 25 general questions, then FFA members will answer 25 questions about production and 4-H members will answer 25 questions about consumerism.

MARKETING QUESTIONS

An example of Manufacturing Grade use for milk would be to make:

a. Condensed Milk
b. Manufacturing grade does not exist
c. Buttermilk
d. Fluid
e. None of the above

An example of a Class I use for milk would be:

a. Cheese
b. Ice Cream
c. Cultured products
d. Fluid milk
e. Cottage Cheese

Raw milk produced under conditions that do not qualify for a Grade A rating, is marketed as:

a. Milk for cheese
b. Milk for butter making
c. Milk for powder conversion
d. All of the above
e. None of the above

The milk marketing system is necessary to:

a. Promote milk use
b. Promote dairy products
c. Monitor the milk value and use
d. Monitor the milk’s quality
e. None of the above

Ice cream would be an example of a Class _____ type milk use:

a. I
b. II
c. III
d. II A
e. III B
When month-to-month milk prices are relatively stable, which of the below listed classifications would receive the *lowest* milk price?

a. Class A
b. Class II
c. Class I
d. Class III
e. Cannot determine from given information

In periods of stable or declining production and fluid milk consumption, but rising cheese consumption, which listed classification would benefit most?

a. Class I
b. Class II
c. Class III
d. Class IV
e. Class A

The support pricing program administrated by the regulating agency purchases which dairy product(s)?

a. Fluid milk and cheese
b. Cheese and cultured products
c. Milk powder, cheese and butter
d. Cottage cheese
e. Cheese only

A common market practice is to classify the dairy product use of the milk. How many classifying categories are there?

a. Four
b. None
c. One
d. Two
e. Three

Calculate the blend price for a market order that has placed:

65% of the milk supply as fluid at $14.50 per hundred weight;
18% of the milk supply in ice cream at $11.28 per hundred weight; and
17% of the milk supply in milk powder at $10.25 per hundred weight.

The blend price would be:

a. $11.28
b. $12.01
c. $13.20
d. $36.03
e. $12.38
An example of a Class III use for milk would be to make:

a. A Class III use does not exist.
b. Ice cream.
c. Nonfat dry milk.
d. Cottage cheese.
e. Hard Cheese.

Under the current method of pricing, which breed of cows would yield the highest price per hundred weight?

a. Holstein.
b. Cross-breed.
c. Guernsey.
d. Jersey.
e. Brown Swiss.

Milk value received by the dairy producer is determined by:

a. Arbitrary standards set by the market system administrator.
b. Manufacturing grade pricing only.
c. The milk cooperatives in cooperation with the market system administrator.
d. How the milk is used.
e. None of the above.

Manufactured grade milk is automatically placed in what level of use classification?

a. II
b. III
c. IV
d. I
e. Does not exist as a grade.

An example of a Class II use of milk would be to make:

a. Butter.
b. Milk powder.
c. Condensed milk.
d. Cheese.
e. None of the above.

In order for a dairy farmer to qualify for the regulated milk marketing system, that person’s milk production environment must also qualify as:

a. A U.S.D.A. premium farm
b. A manufacturing Grade Farm
c. A Grade “A” Farm
d. A state gold star farm
e. An Indiana State approved farm
If a popular new flavor of milk was introduced, which class of milk would benefit most?

a. Class I
b. Class C
c. Class II
d. Class III
e. Class IV

To assure an equitable and orderly milk marketing system to both the dairy farmer and the milk processor, which organization administers this system?

a. The Milk Cooperative Milk Market Order
b. The State Milk Market Orders
c. The Federal Milk Market Orders
d. The Hoosier Milk Marketing Agency
e. Milk Services of Indiana

The marketing system is administered by the:

a. Hoosier Milk Marketing Agency.
b. Indiana State Board of Health.
c. U.S. Department of Agriculture.
d. Purdue University
e. Food and Drug Administration

Milk's final value is based on:

a. How it has been used to make dairy products.
b. How it is graded.
c. Where it was produced.
d. How it is distributed to the consumer.
e. None of the above.

The actual price a dairy producer received for milk may be influenced by

a. Quality premiums
b. Volume premiums
c. Basic Formula Prices
d. Protein and Butterfat differentials
e. All of the above

Fluid milk produced in some states receives a premium based on geographic distance from Minnesota and Wisconsin. This premium is called:

a. Over-order premium
b. Location Specific Differential
c. Basic Formula Price
d. Class I utilization
e. The Hoosier Pool
Dairy Producers may use which of the following tools to help reduce price risk associated with unstable milk prices:

a. BFP Futures
b. Forward contracting
c. Cheese Futures
d. BFP Options
e. All of the above

Milk prices paid to dairy producers are reduced by a small deduction used for advertising. The program supported by this funding is called:

a. Milk PEP
b. Federal Milk Market Orders
c. American Dairy Association
d. Northeast Dairy Compact
e. United States Department of Agriculture

What is the lag time between the monthly basic formula price (BFP) and when it is used for calculating Class I prices?

a. The same month (no lag)
b. 1 month
c. 2 months
d. 3 months
e. The BFP is never used.
PRODUCTION QUESTIONS

To protect the milk quality at the farm, the dairyman is legally required to hold the milk at what temperature? (highest limit)

a. 32°F

b. 35°F

c. 50°F

d. 45°F

e. 40°F

To assure a safe and quality milk, it may not be held at the farm for more than _____ hours.

a. 24

b. 36

c. 72

d. 48

e. none of these

The highest bacteria cell count allowed for Grade A milk at the farm may not exceed _____ per ml.

a. 50,000

b. 20,000

c. 500,000

d. 100,000

e. 250,000

The oxidized off-flavor sometimes found in a milk supply is usually associated with:

a. a mastitis problem

b. an unclean barn environment

c. exposure of the milk to light

d. the feed

e. none of these

The rancid off-flavor of the milk occurs when:

a. the cow has mastitis

b. the cow has been given medication

c. has been exposed to sunlight

d. it has received excessive agitation above 50°F

e. none of these
Which of the following milk off flavors should be detected by smelling?

a. high acid
b. salty
c. onion
d. bitter
e. none of these

Which of the following milk off-flavors can only be detected by tasting?

a. onion
b. unclean
c. high acid
d. rancid
e. none of these

To prevent the rancid off-flavor, the dairyperson could:

a. keep the equipment clean
b. eliminate air leaks in the milking equipment
c. maintain an adequately ventilated barn
d. Protect the milk from exposure to light
e. none of these

To prevent the barny off-flavor, the dairyperson should:

a. ventilate the barn adequately
b. maintain clean and properly clipped cows
c. keep the barn environment clean
d. all of these
e. none of these

The salty off-flavor is associated with what cause?

a. the feed
b. mastitis
c. poorly cooled milk
d. the sanitation condition of the milking equipment
e. the use of fly sprays in the milk house

To prevent high acid milk from occurring the dairy person should

a. milk only those cows that are free of mastitis
b. eliminate weeds from the cow’s feed
c. eliminate air leaks from the milking equipment
d. make sure the dairy milking equipment is clean and sanitized
e. none of the above
The bitter off-flavor is associated with what cause?

a. strong pasture feeds just before milking
b. high risers in the pipelines
c. poor ventilation in the barn
d. cows eating bitter weeds
e. all of the above

When treating a lactating cow for a case of mastitis, what is the maximum antibiotic withdrawal time permitted before the cow may enter the milking herd?

a. 48 hours
b. 72 hours
c. 96 hours
d. 24 hours
e. 120 hours

The primary reason for properly cooling milk is to prevent:

a. bacteria growth
b. the malty flavor
c. rancidity development
d. all of the above
e. none of these

Good milk flavor is important because

a. it is a measure of quality to the consumer
b. it affects acceptability to the consumer
c. it has a pleasing and refreshing taste when cold
d. it can affect all dairy products flavor characteristics
e. all of the above

Teat medicants, sanitizers, barn and crop sprays contribute to what off-flavor defect?

a. unclean
b. foreign
c. cowy
d. high acid
e. barny

The use of the sediment pad helps to identify what quality problem area?

a. poorly cooled milk
b. poorly cleaned milking equipment
c. poorly cleaned and clipped teats and udders
d. poorly maintained barn environment
e. all of the above
Milkstone sometimes found on the milking equipment is caused by:

a. dried milk on the equipment
b. dried up water droplets from a hard mineral water supply
c. dried up water droplets from a soft type mineral water supply
d. none of the above
e. all of these

The malty off-flavor, while rare to occur, usually is caused by:

a. equipment which is contaminated by malty flavor forming bacteria and aided by poorly cooled milk
b. malt included in the feed
c. mastitis milk
d. an energy shortage in the cow’s ration
e. poorly cleaned and clipped cows

Mastitis is:

a. a disease/infection of the foot
b. a disease/infection of the lungs
c. a disease/infection of the teat
d. a disease/infection of the stomach
e. a disease/infection of the udder

Leucocytes (white blood cells) are counted as a part of the quality standards for Grade A milk. Of what value is this determination?

a. Leucocyte numbers can predict the flavor quality of the milk
b. To determine the sanitary (cleanliness) conditions of the farm
c. To determine the level of abnormal milk being produced by unhealthy cows at the farm
d. To determine the influence the food ration is having on the dairy herd’s milk production
e. none of the above

Somatic cell counts associated with the Grade A raw milk can not be higher than:

a. 1,000,000
b. 1,500,000
c. 300,000
d. 750,000
e. 400,000
Which of the following conditions contribute(s) to the occurrence of mastitis in the dairy herd:

a. heat
b. ponded water
c. bedding
d. milking equipment
e. all of the above

What is the main reason for antibiotics getting into the Grade A milk supply?

a. the veterinarian
b. the person milking the cow
c. the person feeding the cow
d. the person giving the antibiotic to the cow
e. all of the above

When is an oil suspended antibiotic given to the dairy cow?

a. during the lactation period
b. when the cow is sick
c. when there is a severe infection
d. never
e. when the cow enters the end of its lactation period
CONSUMER QUESTIONS

Bacteria is added to pasteurized cream to produce sour cream. This bacteria produces an acid characteristic of sour cream. Indicate the acid:

a. lactic acid
b. glutamic acid
c. hydrochloric acid
d. acetic acid

Fat free ice cream contains:

a. low levels of total food solids
b. no milk fat
c. no sugar
d. less milk fat only

The physiologic function of protein is:

a. supporting growth and maintenance of body cells
b. providing energy
c. providing coenzyme in cellular function
d. aiding visual process at night

In cultured milk, such as buttermilk and yogurt, part of the lactose has been converted to:

a. whey
b. lactic acid
c. glutamic acid
d. casein

One of the most significant factors controlling the properties of cheese is:

a. homogenization
b. pasteurization
c. moisture
d. curd particles

The natural sugar in milk is:

a. sucrose
b. lactose
c. maltose
d. fructose
Pasteurization is a process that:

a. breaks milk fat particle into small globules
b. raises the temperature of milk for a specified time to destroy the bacteria
c. adds nutrients to the milk
d. dilutes the lactose in milk

Homogenization is a process that:

a. breaks milk fat particles into small globules
b. raises the temperatures of milk for a few seconds to destroy the bacteria
c. is required by federal law for all milks
d. adds nutrients to the milk such as vitamin A and D

Teenagers should drink _____ of milk daily.

a. 3 cups
b. 2 cups
c. 4 cups
d. 1 pint

Cheeses are made from:

a. whole milk
b. skim milk
c. milk enriched with cream
d. all of the above

Cheese is a good source of:

a. protein, iron and vitamin C
b. protein, calcium and riboflavin
c. iron, calcium and thiamin
d. calcium, vitamin D and iron

Most milks are fortified with vitamin D. Vitamin D is important in the diet because:

a. it is important for cell metabolism
b. it aids in the absorption of calcium
c. it aids in the utilization of ascorbic acid
d. it aids in digestion

Calcium is a vital and necessary mineral in the diet. Indicate the physiological function of calcium.

a. promotes and maintains growth of teeth and bones
b. promotes and maintains growth of all cells
c. promotes and maintains healthy mucous membranes
d. aids in the digestion process
An important part of cheese production is:

a. curd formation
b. treatment of the curd
c. curing or ripening
d. all of the above

Light cream or coffee cream contains not less than _____ percent milk fat.

a. eight
b. ten
c. eighteen
d. twenty-six

Flavorings added to milk…

a. decrease calcium absorption
b. change the vitamin content of milk
c. cause milk to curdle
d. none of the above

The nutrients found in ice cream are:

a. protein, calcium and riboflavin
b. protein, iron and vitamin C
c. iron, calcium and thiamin
d. calcium, vitamin D and iron

A cup of milk contains the same amount of calcium as _____ of ice cream.

a. ½ cup
b. ¾ cup
c. 1 cup
d. 1 ¾ cup

Cottage cheese is made from:

a. cream
b. whole milk
c. skim milk
d. sour cream

Storing milk at 40°F will:

a. help maintain its freshness and flavor for 10 to 20 days
b. result in milk of uniform composition and palatability
c. improve the nutritive value of milk
d. all of the above
Stabilizers are added to ice cream to:

a. prevent formation of large, coarse ice crystals in the ice cream
b. improve the whipping quality of ice cream
c. add richness
d. improve nutritional value

Osteoporosis is...

a. a heart irregularity
b. another name for arthritis
c. a bone-thinning disease
d. another name for fractured hip

The physiologic function of riboflavin is:

a. promotes growth
b. aids in daytime visual process
c. promotes healthy skin and eyes
d. all of the above

Osteoporosis is the result of:

a. poor calcium intake over many years
b. inadequate exercise
c. drinking less than six glasses of water daily
d. excess intake of protein and phosphorus

One cup of milk contains _____ calcium.

a. 100 mg
b. 200 mg
c. 300 mg
d. 150 mg
It is the policy of the Purdue University Cooperative Extension Service, David C. Petritz, Director, that all persons shall have equal opportunity and access to the programs and facilities without regard to race, color, sex, religion, national origin, age, marital status, parental status, sexual orientation, or disability. Purdue University is an Affirmative Action employer.

This material may be available in alternative formats.